Circulating Biomarkers in Young Individuals with Low Peak FEV1

It is now well established that there is a range of lung function tralectories throughout the life course (1, 2). Specifically, 4-12% of young adults in the general population never achieve normal peak lung function, as determined by FEV, measurement (3). These individuals are at higher risk of developing chronic obstructive pulmonary disease (COPD) in adulthood (4), suffer a higher prevalence and a decade earlier incidence of cardiovascular and metabolic disorders, and die prematurely (3, 5). The biological mechanisms underlying these observations are unknown.
Autores: Nuria Olvera 1,2, Sandra Casas 1,2, Judith M. Vonk 3,4, Tamara Garcia 1,2, H. Marike Boezen 3,4, Maarten van den Berge 4, Alvar Agusti 1,2,5,6, and Rosa Faner 1,2,5*
Puedes leer el artículo completo aquí: https://www.atsjournals.org/doi/abs/10.1164/rccm.202205-0855LE?role=tab
Noticias relacionadas

Falling through the cracks: what happens to survivors of preterm birth?
Survivors of preterm birth face increased risks of respiratory diseases, yet awareness among specialists is low. This study examines gaps in long-term care, highlighting the need for clear follow-up guidelines and improved communication between medical teams.

Artificial Intelligence in COPD
Artificial Intelligence in COPD is transforming disease management, from underdiagnosis to treatment guidance. Discover how machine learning clusters patients, predicts outcomes, and optimizes healthcare resources.

Fractional exhaled nitric oxide in a respiratory healthy general population through the lifespan
Discover the normal ranges of fractional exhaled nitric oxide (FeNO) across different age groups in a respiratory healthy population. Based on 2,251 participants, this study identifies factors like age, body height, and eosinophil counts that influence FeNO levels.
Más artículos
COPD
- 759578·Alberto Papi et Al.-Relationships between symptoms and lung function in asthma and/or chronic obstructive pulmonary disease in a real-life setting: the NOVEL observational longiTudinal studY
- 759785·Richard Beasley et Al – Prevalence, Diagnostic Utility and Associated Characteristics of Bronchodilator Responsiveness
- 759788·Alvar Agustí, Rod Hughes, Eleni Rapsomaki, Barry Make, Ricardo Del Olmo, Alberto Papi, David Price, Laura Benton, Stefan Franzen, Jørgen Vestbo, Hana Mullerova – The many faces of COPD in real life: a longitudinal analysis of the NOVELTY cohort
- 759883·Alberto Papi, Rosa Faner, Ian Pavord, Federico Baraldi, Vanessa M McDonald, Mike Thomas, Marc Miravitlles, Nicholas Roche, Alvar Agustí. – From treatable traits to GETomics in airway disease: moving towards clinical practice
- 768799·Surya P Bhatt Richard Casaburi Alvar Agusti et Al. Chronic obstructive pulmonary disease: hiding in plain sight, a Statement from the COPD Foundation Medical and Scientific Advisory Committee
Recuerda que puedes acceder a varios enlaces a artículos dentro de la categoría EPOC en esta web. También puedes acceder otros enlaces en el Listado de Artículos de la Cátedra de Salud Respiratoria.
Imagen obtenida en Canva Pro el 21 de junio de 2023