COPD in the 21st Century
COPD in the 21st Century: Research results.
«COPD in the 21st Century» remains a major topic of discussion due to its significant impact on ill health, disability, healthcare costs and premature mortality. Scientists and clinicians across many countries have made great efforts to understand this important disease, and these have yielded positive results.
This Monograph provides an up-to-date overview of what is happening in this exciting field, both at a basic and a clinical level.
Beginning, crucially, with the patient’s perspective, the chapters that follow consider the best way to define COPD, changes in the disease’s incidence and prevalence, and offer new insights into the role of the microbiome in COPD, advances in imaging and treatment options, both pharmacological and non-pharmacological.
Taken together, these chapters are an important contribution to the Monograph series and the COPD field in general.
Contribution of Cátedra de Salud Respiratoria in "COPD in the 21st Century"
Alvar Agustì and Rosa Faner are part of this book, being authors of chapter 4: A new understanding of the natural history of COPD 45.
Read more details at
Noticias relacionadas
Relationship between Respiratory Microbiome and Systemic Inflammatory Markers in COPD: A Pilot Study
This study explores how changes in the respiratory microbiome relate to systemic inflammation in COPD patients. It highlights correlations between bacterial abundance, eosinophilic markers, and airflow limitation severity.
Telomere length in patients with bronchiectasis
This study investigates telomere length (TL) in bronchiectasis patients, comparing them to COPD patients and healthy controls. Findings show no significant TL reduction in bronchiectasis compared to controls, but a trend towards shorter TL in idiopathic cases. Further research is needed to understand TL’s role in bronchiectasis.
Pathophysiology and genomics of bronchiectasis
Explore the complex pathophysiology of bronchiectasis, including airway infection, chronic inflammation, and mucociliary dysfunction. Learn how genomic approaches, proteomics, and epigenomics offer new insights into disease endotypes and patient stratification for improved therapies. Discover the role of trained innate immunity in complementing current models.
Artículos
COPD
- 759578·Alberto Papi et Al.-Relationships between symptoms and lung function in asthma and/or chronic obstructive pulmonary disease in a real-life setting: the NOVEL observational longiTudinal studY
- 759785·Richard Beasley et Al – Prevalence, Diagnostic Utility and Associated Characteristics of Bronchodilator Responsiveness
- 759788·Alvar Agustí, Rod Hughes, Eleni Rapsomaki, Barry Make, Ricardo Del Olmo, Alberto Papi, David Price, Laura Benton, Stefan Franzen, Jørgen Vestbo, Hana Mullerova – The many faces of COPD in real life: a longitudinal analysis of the NOVELTY cohort
- 759883·Alberto Papi, Rosa Faner, Ian Pavord, Federico Baraldi, Vanessa M McDonald, Mike Thomas, Marc Miravitlles, Nicholas Roche, Alvar Agustí. – From treatable traits to GETomics in airway disease: moving towards clinical practice
- 768799·Surya P Bhatt Richard Casaburi Alvar Agusti et Al. Chronic obstructive pulmonary disease: hiding in plain sight, a Statement from the COPD Foundation Medical and Scientific Advisory Committee
Estudios
- 759397·Alberto Sandiumenge et Al.-Systemic Inflammation Differences in Brain-vs. Circulatory-Dead Donors: Impact on Lung Transplant Recipients
- 759578·Alberto Papi et Al.-Relationships between symptoms and lung function in asthma and/or chronic obstructive pulmonary disease in a real-life setting: the NOVEL observational longiTudinal studY
- 759689·Kilian Vellvé et Alt.- Pulmonary vascular reactivity in growth restricted fetuses using computational modelling and machine learning analysis of fetal Doppler waveforms.
- 769273· Singh D, Criner GJ, Agustí A et al. Benralizumab Prevents Recurrent Exacerbations in Patients with Chronic Obstructive Pulmonary Disease: A Post Hoc Analysis
- 769685·Nuria Olvera et Al.- Lung Tissue Multi-Layer Network Analysis Uncovers the Molecular Heterogeneity of COPD
Imagen realizada con photoshop.