Bayesian modelling of combined FEV1 and FVC vital lung function trajectories: relationship with airflow obstruction and PRISm
Introduction: Airflow Obstruction and PRISm Through Bayesian Modelling of FEV1 and FVC Trajectories
Previous studies have shown that there is a range of FEV1 trajectories across the lifespan.
Yet, how trajectories defined by the combination of both FEV1 and FVC relate to airflow obstruction (AO; FEV1/FVC<0.7 and FEV1< 80% ref.) or Preserved Ratio Impaired Spirometry (PRISm; FEV1/FVC ≥ 0.7 and FEV1 < 80% ref.) is unknown.
Methods: Applying Bayesian Modelling to FEV1 and FVC Trajectories in the Framingham Offspring Cohort
We applied Bayesian non-parametric mixture modeling to data from the Framingham Offspring Cohort (FOC). Trajectory subgroups were identified by simultaneously modeling both pre-bronchodilator FEV1 and FVC (in liters) as a function of age and height.
We modeled all males >20 yr. (N=1,333). The prevalence of AO or PRISm and age of onset was compared across trajectories.
Results: Seven Distinct Trajectories Identified via Bayesian Modelling of FEV1 and FVC
This analysis identified seven FEV1 and FVC defined trajectories.
Their description (Table1) was based on both measurements, which were in accordance with each other.
Conclusion: Associations Between Airflow Obstruction, PRISm, and Bayesian Modelled FEV1 and FVC Trajectories
Bayesian non-parametric trajectory modeling identified seven combined FEV1 and FVC life-course trajectories differentially associated to AO or PRISm.
Authors
Núria Olvera Ocaña, Àlvar Agustí, James Ross, Rosa Faner
Read more details at
Noticias relacionadas
Dr. Alvar Agustí, Highly Cited Researcher
Discover why Dr. Alvar Agustí is recognized as a Highly Cited Researcher by Clarivate Analytics. His exceptional contributions, reflected in top 1% citation rankings on the Web of Science, showcase his unparalleled influence in global research.
¿Cómo podría la inteligencia artificial mejorar la experiencia del paciente en el ámbito ambulatorio? Reflexiones del grupo JANUS
Explora cómo la IA puede mejorar en el ámbito ambulatorio del paciente, desde la toma de decisiones clínicas hasta el empoderamiento del paciente. Reflexiones del grupo JANUS basadas en su experiencia como sanitarios y pacientes.
Investigación Médica en Hospitales: Conferencia inaugural de las sesiones de médicos residentes del hospital Clinic de Barcelona.
¿Por qué la investigar en un hospital? Porque la investigación médica en hospitales es la ÚNICA forma en la que la medicina puede avanzar.
Artículos
Estudios
- 759397·Alberto Sandiumenge et Al.-Systemic Inflammation Differences in Brain-vs. Circulatory-Dead Donors: Impact on Lung Transplant Recipients
- 759578·Alberto Papi et Al.-Relationships between symptoms and lung function in asthma and/or chronic obstructive pulmonary disease in a real-life setting: the NOVEL observational longiTudinal studY
- 759689·Kilian Vellvé et Alt.- Pulmonary vascular reactivity in growth restricted fetuses using computational modelling and machine learning analysis of fetal Doppler waveforms.
- 769273· Singh D, Criner GJ, Agustí A et al. Benralizumab Prevents Recurrent Exacerbations in Patients with Chronic Obstructive Pulmonary Disease: A Post Hoc Analysis
- 769685·Nuria Olvera et Al.- Lung Tissue Multi-Layer Network Analysis Uncovers the Molecular Heterogeneity of COPD
Imagen desarrollada con Canva