Metabolomic Plasma Profile of Chronic Obstructive Pulmonary Disease Patients
This study identifies a metabolic signature of COPD patients, involving fatty acids, amino acid and carbohydrate metabolites, using LC-MS plasma profiling.
This study identifies a metabolic signature of COPD patients, involving fatty acids, amino acid and carbohydrate metabolites, using LC-MS plasma profiling.
Un estudio reciente en Osona (Cataluña) refleja que 20,7% de jóvenes presenta alteraciones espirométricas. También revela síntomas y factores de riesgo en la población joven ambulatoria.
No te pierdas la II edición RESPrimaria el próximo 7 de mayo. Inscríbete en formato Streaming o solicita tu invitación presencial. ¡Plazas limitadas!
Proteomic Predictors of Mortality in Stable COPD is the objective of this pilot study. It searchs to identify proteomic markers and specific multiprotein signatures that could be useful in predicting long-term mortality
Siprometry to diagnose COPD: GOLD 2025 recommends using pre-BD spirometry to rule out COPD and post-BD to confirm, ensuring volume responders are not overlooked.
Climate change and COPD are linked through extreme temperature, wildfire smoke, dust storms and allergen exposure, which pose major health threats.
Airway mucous plugging is associated with exacerbations, lung function decline, and mortality in COPD, asthma, and bronchiectasis. Identifying it as a treatable trait may improve patient outcomes through airway clearance techniques and pharmacological strategies.
Descubre los avances en el diagnóstico y tratamiento de la EPOC con el Dr. Alvar Agustí en la II Jornada SEMG Resprimaria. Conoce la importancia de la espirometría, la detección precoz y las nuevas estrategias terapéuticas.
Survivors of preterm birth face increased risks of respiratory diseases, yet awareness among specialists is low. This study examines gaps in long-term care, highlighting the need for clear follow-up guidelines and improved communication between medical teams.
Artificial Intelligence in COPD is transforming disease management, from underdiagnosis to treatment guidance. Discover how machine learning clusters patients, predicts outcomes, and optimizes healthcare resources.