A Pilot Study on Proteomic Predictors of Mortality in Stable COPD

Proteomic Predictors of Mortality in Stable COPD
Proteomic Predictors of Mortality in Stable COPD is the objective of this pilot study. It searchs to identify proteomic markers and specific multiprotein signatures that could be useful in predicting long-term mortality

Proteomic predictors of mortality in COPD and their connection to respiratory, cardiovascular, and cancer-related deaths

Can Proteomic Predictors of Mortality Help Forecast Outcomes in Stable COPD?

Most of the long-term deaths are attributable to respiratory causes, with lower percentages attributed to cardiovascular/cerebrovascular events or cancer.

It is worth nothing that a trend toward better prognoses (disease progression, exacerbations, and mortality) has been observed in the last few years.

This phenomenon may be due to recent changes in treatment and involves the need for new studies on the current predictors of mortality.

Studying proteomic predictors of mortality in COPD to improve survival prognosis

Therefore, the objective of this pilot study was to identify proteomic markers and specific multiprotein signatures that could be useful in predicting long-term mortality, identifying the related pathways and contributing to our knowledge on the mechanisms linked to a poor prognosis for COPD patients.

Proteomic predictors of mortality in COPD: Understanding the biological mechanisms involved in future deaths in long-term patients

A proteomic blood signature found in stable COPD patients can help in establishing their long-term (4-year) survival prognosis.

The most important elements for establishing this prognosis are proteins/peptides linked to the hemostatic and inflammatory statuses during the stable phase, as well as different elements of the immune response.

Furthermore, the present results may help us to better understand the biological mechanisms involved in future deaths in long-term patients.

Authors

Cesar Jessé Enríquez-Rodríguez, Carme Casadevall, Rosa Faner, Sergi Pascual-Guardia, Ady Castro-Acosta, José Luis López-Campos, Germán Peces-Barba, Luis Seijo, Oswaldo Antonio Caguana-Vélez, Eduard Monsó, Diego Rodríguez-Chiaradia, Esther Barreiro, Borja G. Cosío, Alvar Agustí, Joaquim Gea and on behalf of the BIOMEPOC Group

Read more details at

Fecha de publicación

Published: 14 August 2024

Categorías asociadas al artículo

Noticias relacionadas

Artificial Intelligence in COPD

Artificial Intelligence in COPD

Artificial Intelligence in COPD is transforming disease management, from underdiagnosis to treatment guidance. Discover how machine learning clusters patients, predicts outcomes, and optimizes healthcare resources.

Leer más »

Imagen desarrollada DALL·E, Canva y Diseño gráfico

Entérate de
Nuestras Publicaciones

Loading
Logotipo Universitat de Barcelona - Càtedra de Salut Respiratòria
Resumen de privacidad

Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.